

ASSISTANCE

Adapted situation awareneSS tools and taIlored training curricula for
increaSing capabiliTie and enhANcing the proteCtion of first respondErs

Project co-funded by the European Union within the Horizon 2020 Programme

Project Ref. N° ASSISTANCE H2020 - 832576

Start Date / Duration May 1, 2019 (36 months)

Dissemination Level1 PU (Public)

Author / Organisation Viasat

Deliverable D4.6

Mission Planner

31/12/2020

1 PU: Public; PP: Restricted to other programme participants (including the EC services); RE: Restricted to a group specified by the
Consortium (including the EC services); CO: Confidential, only for members of the Consortium (including the EC services).

Ref. Ares(2021)695981 - 28/01/2021

D4.6 Mission Planner

2 / 53

ASSISTANCE

Nowadays different first responder (FR) organizations cooperate together to face large

and complex disasters that in some cases can be amplified due to new threats such as

climate change in case of natural disasters (e.g. larger and more frequent floods and

wild fires, etc.) or the increase of radicalization in case of man-made disasters (e.g.

arsonists that burn European forests, terrorist attacks coordinated across multiple

European cities).

The impact of large disasters like these could have disastrous consequences for the

European Member States and affect social well-being on a global level. Each type of FR

organization (e.g. medical emergency services, fire and rescue services, law

enforcement teams, civil protection professionals, etc.) that mitigate these kinds of

events are exposed to unexpected dangers and new threats that can severely affect

their personal safety.

ASSISTANCE proposes a holistic solution that will adapt a well-tested situation

awareness (SA) application as the core of a wider SA platform. The new ASSISTANCE

platform is capable of offering different configuration modes for providing the tailored

information needed by each FR organization while they work together to mitigate the

disaster (e.g. real time video and resources location for firefighters, evacuation route

status for emergency health services and so on).

With this solution ASSISTANCE will enhance the SA of the responding organisations

during their mitigation activities through the integration of new paradigms, tools and

technologies (e.g. drones/robots equipped with a range of sensors, robust

communications capabilities, etc.) with the main objective of increasing both their

protection and their efficiency.

ASSISTANCE will also improve the skills and capabilities of the FRs through the

establishment of a European advanced training network that will provide tailored

training based on new learning approaches (e.g. virtual, mixed and/or augmented

reality) adapted to each type of FR organizational need and the possibility of sharing

virtual training environments, exchanging experiences and actuation procedures.

ASSISTANCE is funded by the Horizon 2020 Programme of the European Commission, in

the topic of Critical Infrastructure Protection, grant agreement 832576.

D4.6 Mission Planner

3 / 53

Disclaimer

This document contains material, which is the copyright of certain ASSISTANCE consortium parties, and

may not be reproduced or copied without permission.

The information contained in this document is the proprietary confidential information of the ASSISTANCE

consortium (including the Commission Services) and may not be disclosed except in accordance with the

consortium agreement.

The commercial use of any information contained in this document may require a license from the

proprietor of that information.

Neither the project consortium as a whole nor a certain party of the consortium warrant that the

information contained in this document is capable of use, nor that use of the information is free from risk,

and accepts no liability for loss or damage suffered by any person using this information.

The information in this document is subject to change without notice.

D4.6 Mission Planner

4 / 53

Executive Summary

This deliverable presents the software for gathering on field data and mission planning.

The purpose of this document is to describe the detailed Implementation of the modules

involved in the task T4.6. These modules contribute to the two following modules:

Mission Planner Management (MPM) and Optimized Mission Computation (OMC):

• Modules related to Mission Planner Management (MPM) module: they are

related to the definition of the context (e.g. available drones/robots and related

capacities, forbidden zones, working altitude…) and tasks of the mission (camera

shoot, temperature measure) before resources plans computation by optimized

mission software.

• Modules related to Optimized Mission Computation (OMC) module: OMC can

distribute tasks between drones/robots, taking into account their specific

capabilities (functions performed) and autonomy. It provides a mission plan for

each of the selected drones/robots.

The resulting flight plans of each resources are then sent to the Ground Station for

execution.

List of Authors

Organisation Authors

VIASAT Stéphane Michaud

THALES Lionel Gayraud

D4.6 Mission Planner

5 / 53

Change control datasheet

Version Changes Chapters Pages Date

0.1 First draft All 45 16/10/20

0.2 Reviewed by PIAP All 45 11/12/20

0.3 Reviewed by CNBOP All 45 21/01/21

0.4 Reviewed by CATEC All 45 25/01/21

D4.6 Mission Planner

6 / 53

Content

Executive Summary .. 4

List of Authors .. 4

Change control datasheet... 5

Content .. 6

List of Figures ... 7

Acronyms ... 8

1. Introduction .. 9

1.1. Purpose of the document .. 9

1.2. Scope of the document .. 9

2. Description of the task T4.6 ... 9

3. Architecture and data model .. 10

3.1. T4.6 Architecture ... 11

3.2. Data model .. 12

3.2.1. Internal T4.6 ... 12

3.2.2. In relation to SAS .. 17

3.3. Sequence diagrams ... 19

3.3.1. Sequence “Mission Preparation” .. 19

4. Modules ... 22

4.1. Mission Planner Management (MPM) component ... 22

4.1.1. Implementation .. 22

4.1.2. Data Model ... 30

4.1.3. Module Tests .. 30

4.2. Optimized Mission Computation (OMC) module ... 33

4.2.1. Implementation .. 33

4.2.2. Data Model ... 42

4.2.3. Module Tests .. 43

5. Use cases ... 49

5.1. Mission Preparation .. 49

6. Conclusion ... 51

7. Bibliography ... 52

D4.6 Mission Planner

7 / 53

List of Figures

Figure 1 – ASSISTANCE Architecture Schema ... 10

Figure 2 – T4.6 Architecture Schema ... 11

Figure 3 – MissionOrderRequest message ... 14

Figure 4 – MissionPreparationRequest message ... 15

Figure 5 – Mission message .. 16

Figure 6 – Mission message .. 19

Figure 7 – Mission Preparation sequence .. 21

Figure 8 – Target definition .. 23

Figure 9 – Cost Penalized areas for flying ... 23

Figure 10 – Ground obstacles for driving ... 24

Figure 11 – Mission Definition .. 24

Figure 12 – Overview resources locations .. 25

Figure 13 – Example list of resource involved in the mission .. 25

Figure 14 – List of actions to perform .. 26

Figure 15 – Sensor used .. 27

Figure 16 – Resource path .. 28

Figure 17 – GCS Situation awareness ... 29

Figure 18 – Waypoints vs clusters planning ... 37

Figure 19 – Task ordering with respect to context ... 38

Figure 20 – Collapse of Genoa bridge in 2018 .. 39

Figure 21 – Landslide in Taïwan in 2010 ... 39

Figure 22 – Smooth trajectories vs Dijkstra like trajectories ... 41

Figure 23 – Trajectory pruning ... 41

Figure 24 – Example of KML scenario file ... 43

Figure 25 – Test scenario edited on Google Earth ... 44

Figure 26 – Comparison of scenarii 1, 2 and 3 ... 45

Figure 27 – Results on scenario 1 ... 46

Figure 28 – Results on scenario 2 ... 47

Figure 29 – Results on scenario 3 ... 48

D4.6 Mission Planner

8 / 53

Acronyms

ASSISTANCE Adapted situation awareneSS tools and taIlored training
curricula for increaSing capabiliTie and enhANcing the
proteCtion of first respondErs

PC Project Coordinator

D#.# Deliverable number #.# (D1.1 deliverable 1 of work package 1)

DoA Description of Action of the project

EC European Commission

EU European Union

GA Grant Agreement

H2020 Horizon 2020 Programme for Research and Innovation

IPR Intellectual Property Rights

M# #th month of the project (M1=May 2017)

WP Work Package

IPR Intellectual Property Rights

PSC Project Steering Committee

PIC Project Implementation Committee

PSB Project Security Board

AB Advisory Board

TL Task Leader

WPL Work Package Leader

CMS Content Management System

OMC Optimized Mission Computation

MPM Mission Planner Management

SAS Sensor Abstraction Service

UxVs Unmanned Vehicle

MPM Mission Preparation Request

GCS Ground Control Station

MMM Mission Manager Module

HMI Human-Machine Interface

JSON JavaScript Object Notation

KML Keyhole Markup Language

GUI Graphical User Interface

D4.6 Mission Planner

9 / 53

1. Introduction

This document represents the deliverable D4.6 “Mission Planner” related to the task

T4.6 of the Assistance H2020 project. This document contains several information

proving that all software modules of this task are well implemented and tested.

1.1. Purpose of the document

The purpose of this document is explaining deep in detail how “Mission Management

Module” has been developed.

This document contains information to prove that all software modules of this task are

well implemented and tested. They are now ready for the integration phase.

All modules are described with the corresponding architecture, data models and

software implementation. All software modules are tested in three different steps:

- Component standalone.

- Component with one other component.

- Mission Management Module with the SAS.

These tests with results (obtained during testing session) are also described in this

document.

1.2. Scope of the document

The document is organized as follow. Chapter 2 recalls the objectives of task 4.6 and

places the Mission Management Module within the ASSISTANCE project. Chapter 3

presents the overall architecture of the Mission Management Module and associated

data models. Chapter 4 provides a detailed description of the two modules making up

the Mission Management Module, namely MPM (mission planner management) and

OMC (optimized mission computation). Finally, chapter 5 presents the overall sequence

diagram in which the mission management module is involved in the ASSISTANCE

project.

2. Description of the task T4.6

Task 4.6 is to develop the Mission Management Module. The latter must allow an

operator to easily plan a multi-drone mission according to objectives (temperature

measurements or shots), constraints (autonomy and carrying of available

drones/robots, geographical areas to be avoided), and given initial conditions (initial

position of the drones/robots). This planning takes into account other factors, such as

the load and autonomy of each drone/robot.

D4.6 Mission Planner

10 / 53

Mission Management Module is broken down into 2 layers:

• The Optimized Mission Computation module computes all paths.

• The Mission Planner Management module defines the context and organize the

workflow in order to achieve the computation. After computation, it delivers the

different mission plans (one per selected resource) to the Ground Station via SAS

middleware.

UGV path will avoid obstacles based on georeferenced footprints. These footprints must

be provided by end user using User interface to define the corresponding polygons.

3. Architecture and data model

This figure below depicts the main ASSISTANCE components and their interactions and

information flows. The following section describes these high-level information flows in

detail. Task 4.6 is to develop the Mission Management Module and its HMI, which is

aimed to be used by Tool Operator.

Figure 1 – ASSISTANCE Architecture Schema

D4.6 Mission Planner

11 / 53

3.1. T4.6 Architecture

The architecture of the task T4.6 and links between components can be summarized in

the following diagram.

Figure 2 – T4.6 Architecture Schema

In this diagram, plain links represents communication between component through

messages. Dash links represents communications between user and components.

The detailed message used in the context of the task T4.6 will be described in the

following chapters.

The main goal of this architecture is to avoid direct links between components (inside

or outside T4.6). We are using a middleware in order to clarify communication and to

be able to improve the number of components that can be used.

MPM is managing the workflow to compute the mission of UxVs. For this case, MPM

collects information about the context and send the MissionPreparationRequest to the

middleware. OMC will use this information to compute the whole mission. It is an

asynchronous call because OMC response time is not fixed (it depends on the number

of tasks, the number of resources etc.). Once the mission is computed, OMC publish a

Mission message on the middleware which contains a detailed description of the mission

that each UxV must perform (waypoints and sensor actions the Pilot/UxV will have to

perform).

MPM will then build a dedicated message SASMission in order to reach each involved

GCS/UxV. This message is sent using Web API REST provided by SAS.

D4.6 Mission Planner

12 / 53

3.2. Data model

3.2.1. Internal T4.6

As described above, inside T4.6, messages are exchanged between components by using

a middleware (based on RabbitMQ). RabbitMQ is an open source message-oriented

middleware that allows software to exchange messages without any low-level network

considerations. This middleware is available for any type of software development

language. It is also an opportunity to validate this principle.

Each message has been described using YAML format (see the detailed specification

here: https://en.wikipedia.org/wiki/YAML). This format allows developers to define the

message in a human readable language.

The content of messages transmitted is using JSON format (see the detailed specification

https://en.wikipedia.org/wiki/JSON). At Viasat, we have developed a tool that allows us

to transform the YAML message into a C# class. In our component, we are basically using

C# class and a serialization/deserialization library. With this compilation chain, any

modification/improvement is easily considered at the development level.

For the task T4.6, we are using the following structures:

- Area.schema.yaml

- Drone.schema.yaml

- FlightAction.schema.yaml

- FlightActionGoto.schema.yaml

- FlightActionLand.schema.yaml

- FlightActionPrepare.schema.yaml

- FlightActionType.schema.yaml

- FlightActionWait.schema.yaml

- GeographicLocation.schema.yaml

- Mission.schema.yaml

- MissionOrderRequest.schema.yaml

- MissionPreparationRequest.schema.yaml

- Plan.schema.yaml

- Sensor.schema.yaml

- SensorAction.schema.yaml

- SensorActionCameraShoot.schema.yaml

- SensorActionParameter.schema.yaml

- SensorActionTemperatureRead.schema.yaml

- SensorActionType.schema.yaml

- SensorCameraIR.schema.yaml

- SensorCameraVisible.schema.yaml

https://en.wikipedia.org/wiki/JSON

D4.6 Mission Planner

13 / 53

- SensorTemperature.schema.yaml

- TargetType.schema.yaml

The table below gives a short description of each structure

Message Name Description

Area Define the area of the mission.

Drone Define the characteristic of available resource

FlightAction It is the base structure for all defined flight action

FlightActionGoto Describe the action ‘Goto waypoint’

FlightActionLand Describe the action ‘Land’

FlightActionPrepare Describe the action ‘Prepare’ before takeoff.

FlightActionType Enumeration which define all type of action

FlightActionWait Describe the action ‘Wait’

GeographicLocation Describe a geographic location (latitude, longitude,

heightAboveEllipsoid)

Mission Define the mission

MissionOrderRequest Define the request for a mission

MissionPreparationRequest Define the Mission preparation information

Plan Define a Plan for a resource

Sensor Define the characteristic of a sensor (T4.6 need)

SensorAction Base structure for sensor action

SensorActionCameraShoot Define the action ‘Camera shoot’

SensorActionParameter Define the parameter for an action

SensorActionTemperatureRead Define the action ‘Temperature read’

SensorActionType Enumeration who define the list of sensor action

SensorCameraIR Define the characteristics for an IR Camera

SensorCameraVisible Define the characteristics for a Visible camera

SensorTemperature Define the characteristics for a temperature sensor

TargetType Define the type of the target requested for the

mission

D4.6 Mission Planner

14 / 53

Table 1 Summary of internal structures

The diagram below describes the link (and their type) between all structures. The top-

level structure defines the message that is exchanged between components.

Figure 3 – MissionOrderRequest message

D4.6 Mission Planner

15 / 53

Figure 4 – MissionPreparationRequest message

D4.6 Mission Planner

16 / 53

Figure 5 – Mission message

D4.6 Mission Planner

17 / 53

3.2.2. In relation to SAS

As it is described in the diagram T4.6 Architecture, Mission Management Module has

links with SAS (Sensor Abstraction Service). This chapter describes messages used to

communicate with SAS. Document D3.1 and D3.2 describes the list of messages that SAS

is able to manage.

In order to be compliant with the T4.6 principles, each message has been translated into

YAML format.

T4.6 (MPM) used this list of messages:

- SASContext.schema.yaml

- SASGeometry.schema.yaml

- SASMapping.schema.yaml

- SASMission.schema.yaml

- SASPointOfInterest.schema.yaml

- SASPosition.schema.yaml

- SASReply.schema.yaml

- SASResource.schema.yaml

- SASResourceSubType.schema.yaml

- SASResourceType.schema.yaml

- SASRoute.schema.yaml

- SASSensor.schema.yaml

- SASWaypoint.schema.yaml

- SASZone.schema.yaml

The table below gives a short description of each structure

Message Name Description

SASContext Define the mission context

SASGeometry Define the GeoJSON geometry

SASMission Define the structure for a mission (sent to the GCS)

SASReply Define the structure received by each call to the

REST API

SASResource Define a resource (from ASSISTANCE point of view)

SASResourceSubType Enum that define the subtype of a resource

D4.6 Mission Planner

18 / 53

SASResourceType Enum that define the type of a resource

SASSensor Define a sensor

SASWaypoint Define a waypoint (where a resource has to go)

SASZone Define an area in term of GeoJSON

- Table 2 Summary of the SAS structures

D4.6 Mission Planner

19 / 53

The diagram below describes the link (and their type) between all structures. The top-

level structure defines messages that are exchanged with SAS.

Figure 6 – Mission message

3.3. Sequence diagrams

This chapter describes the sequence diagram for this task.

3.3.1. Sequence “Mission Preparation”

This chapter describes the sequence diagram implemented to compute the flight path

associated to the sensor configuration in order to execute a mission. The sequence diagram uses

the messages exchanged between components as well. It allows users to prepare the mission

for resources (Unmanned type).

The sequence diagram below describes the whole process from the Tool Operator to the Remote
Pilot:

- Block 1 (Prepare Mission Context): Tool Operator prepares the context of the mission
by defining the mission area, targets and the cost penalized area. Forbidden areas (with
penalization level) will be used by OMC to compute the best path to follow.

- Block 2 (Create Mission): Remote Pilot asks for the mission to be created. It is basically
the step where action is sent from the Frontend to the MPM Management.

D4.6 Mission Planner

20 / 53

- Block 3 (Resource Management): MPM asks SAS to inventory all available UxVs for this
new mission, and for each UxV, the list of sensors hosted by this resource. MPM
Management builds and sends a MissionPreparationRequest message.

- Block 4 (Computation): OMC computes the mission and produces a flight plan per
selected UxV. After computation, OMC sends back the message Mission containing all
actions (transit to waypoint and sensor actions).

- Block 5 (Deployment): deployment of this new mission to the SAS via Web REST API.
MPM Management posts the new mission to the SAS. MPM Management notifies Tool
Operator via MPM Frontend.

- Block 6 (group): taking into account by Remote Pilot of the new mission via SAS
connection to its Ground Control Station

D4.6 Mission Planner

21 / 53

Figure 7 – Mission Preparation sequence

D4.6 Mission Planner

22 / 53

4. Modules

The following chapters describe the detailed architecture, implementation data model

and unit tests performed for modules MPM (Mission planner management) and OMC

(Optimized Mission Computation) in order to achieve the final T4.6.

4.1. Mission Planner Management (MPM) component

The objective of the whole component MPM is to organize the computation of Mission

Preparation by following different steps that will allow to send a detailed plan to each

unmanned resource via the GCS. This component allows the user to define the context

of the mission by defining:

- Mission area.

- Target point (temperature/camera, working distance, duration of observation).

- Cost penalized areas (with associated magnitude).

4.1.1. Implementation

The implementation of this task is composed by the frontend user interface, the backend
process and the workflow management. This implementation is based on asynchronous
call that allows this task to process several missions at the same time (scalability). One
of the major goals for us is the ability to build a mission with many UxVs.
Viasat implements a user interface to define the Mission Context. The following
paragraph shows several screenshots who will explain the process to define the
MissionContext.
The following pictures show how user can define threats for this mission. It is possible
to define:

- Coloured squares which represent the target
- Field “Altitude target” defines the altitude of the target
- Field “Duration for observation” defines the duration in seconds to observe the

target
- Field “Working distance” defines the distance to the target

Remark: colour of target can be modified by the user.

D4.6 Mission Planner

23 / 53

Figure 8 – Target definition

This user interface describes how to define the different cost penalized areas of the
mission. Each polygon defines an area, and then the users associate a cost to each of
these areas by selecting a value in the combo box (cost penalized level).

Figure 9 – Cost Penalized areas for flying

D4.6 Mission Planner

24 / 53

Figure 10 – Ground obstacles for driving

And finally, the “Mission area” tab summarizes the whole information in one screen. All
previous information defined by user are shown in this dialog box.
In this user interface, users can create/update the whole mission area. It allows the
component MPM to discover resources that can be involved in the mission. In this
picture, resources (defined by their type and subtype) are displayed with several icons.

Figure 11 – Mission Definition

D4.6 Mission Planner

25 / 53

The following pictures shows all resources available on SAS and their location.

Figure 12 – Overview resources locations

And finally, the following picture shows the computation of the list of action after the
computation by OMC. In this picture, the user can see the list of resource involved in
this mission (after computation). It is the most relevant information coming from this
part of the screen. Each resource is displayed with a dedicated colour, which is also used
to display the associated path.

Figure 13 – Example list of resource involved in the mission

D4.6 Mission Planner

26 / 53

Figure 14 – List of actions to perform

A list of actions is represented by a path:

• Goto action is basically a straight line

• Wait action is just a point at the previous location (that is why sometimes, the
numbering seems to skip a number).

• Prepare action is basically the first point.

• Land action is basically the last point.

Each circle shows waypoint to be performed. The number indicates the order to follow.

MPM sends also SASMission message to SAS. The next picture shows the Viasat Ground
Control Station that allows Remote Pilot to control camera hosted in our Ground
Vehicle. This GCS also allows us to validate the whole process of Mission Preparation as
an end to end process.
Figures below shows the SASMission received by the Ground Control Station. Remote
Pilot can see the detailed path (with all waypoints).

The figure below shows the selected sensor used for this mission.

D4.6 Mission Planner

27 / 53

Figure 15 – Sensor used

D4.6 Mission Planner

28 / 53

The next figure shows the path and the trigger point where the sensor has to execute a sensor action. Stars represents targets.

Figure 16 – Resource path

D4.6 Mission Planner

29 / 53

And finally, the figure below shows the screen used by the remote pilot during the mission.

Figure 17 – GCS Situation awareness

D4.6 Mission Planner

30 / 53

4.1.2. Data Model

This chapter describes the messages used by the component MPM defined as

inputs/outputs:

The table below lists messages used by component MPM and indicates whether the

message is an input or an output of this task.

Message name Input/output

MissionOrderRequest Input

MissionPreparationRequest Output

Mission Input

SASMission Output

SASResource input

SASSensor Input

SASContext Output

Table 3 structures used by MPM

Remark: see chapter 3.2 to get the detailed description of each message.

4.1.3. Module Tests

In order to validate the component MPM, Viasat has implemented several mockup

applications for all the other component:

• OMC: Optimized Mission Computation.

• SAS: Sensor Abstraction Service.

The goal of these unit tests is to validate interfaces between tasks. It is not considered

the algorithm behind.

To the extent that this was feasible, Viasat has also run several tests with the real

implementation of the other components in order to start validation of our

development. The following chapters describe deep in details stages that we perform to

reach the end of the implementation of MPM.

Tests between MPM and OMC

D4.6 Mission Planner

31 / 53

This test aims to check MissionPreparationRequest and Mission messages. These

messages are the main used between these two components.

Step Description Checks

1 MPM Web Frontend defines a Mission Context Check user interface usage

2 MPM Web Frontend requests a computation

3 MPM Management receive a

MissionOrderRequest

Check log file with JSON

content

4 MPM Management sends

MissionPreparationRequest

Check log file with JSON

content

5 OMC reply a Mission Check log file with JSON

content

Table 4 Unit test for MPM and OMC

This unit test has been performed with different contexts:

• 1 resource and 1 target (Camera) – 1 Cost Penalized area

• 1 resource and 1 target (Temperature) – 1 Cost Penalized area

• 1 resource and 2 targets (Camera and Temperature) – 2 Cost Penalized areas

• 2 resources and 2 targets (Camera and Temperature) – 2 Cost Penalized areas

• 2 resources and 4 targets (Camera and Temperature) – 4 Cost Penalized areas

• 4 resources and 2 targets (Camera and Temperature) – 4 Cost Penalized areas

Tests between MPM and SAS

The goal of this test is to validate messages SASResource and SASSensor. These messages

are used to launch a mission computation. It allows to know where resources are and

what are hosted by resources.

Step Description Verification

1 Clean resources in SAS Check that database is empty

2 Clean sensors in SAS Check that database is empty

3 Create a combination of each

type/subtype of resources

Type:

Check that database contains 18

resources

D4.6 Mission Planner

32 / 53

 - person

 - vehicle

 - unmannedVehicle

Subtype:

 - car

 - van

 - truck

 - fireman

 - policeman

 - sanitary

4 Create a sensor for each resource of type

“unmannedVehicle”

Check that database contains 6

sensors

5 MPM requests resources Check log files JSON messages

and MPM Dictionnary

6 MPM requests sensors for each resources

of type “unmannedVehicle”

Check log files JSON messages

and MPM Dictionnary

Table 5 Unit test for MPM with SAS

The goal of this test is to validate messages SASContext and SASMission. These messages

are used to

Step Description Verification

1 Clean resources in SAS Check that database is empty

2 Clean sensors in SAS Check that database is empty

3 Create a combination of each

type/subtype of resources

Type:

 - person

 - vehicle

 - unmannedVehicle

Subtype:

Check that database contains 18

resources

D4.6 Mission Planner

33 / 53

 - car

 - van

 - truck

 - fireman

 - policeman

 - sanitary

4 Create a sensor for each resource of

type “unmannedVehicle”

Check that database contains 6

sensors

5 MPM requests resources Check log files JSON messages and

MPM Dictionnary

6 MPM requests sensors for each

resources of type “unmannedVehicle”

Check log files JSON messages and

MPM Dictionnary

4.2. Optimized Mission Computation (OMC) module

4.2.1. Implementation

OMC is a state-of-the-art technological brick developed for ASSISTANCE. It makes it

possible to build a collaborative mission for a swarm of heterogeneous drones (different

autonomies and functionalities). A patent is pending. We begin by presenting a state-of-

the-art analysis of mission planning that will allow us to position and justify the

technological concept upon which the OMC is based. We then present in a more specific

way the mission solver we developed.

4.2.1.1 State of the art and justification of the technological concept used

In terms of task allocation, optimal solutions are rarely mentioned, due to the resulting

combinatorial explosion [2] [3] [15]. There is an immense literature on meta-heuristic

approaches, that is to say, producing solutions whose optimality is not guaranteed. For

simple illustration, see for example [8] to [17]. This list is far from being exhaustive. In

[2] authors report for example the case where the difference between the optimal

solution and the solution produced by a heuristic approach is 50% on average, and 150%

in the worst case.

Many other solutions have been devised in the event that the allocation must be

decentralized for reasons related to various operational constraints. See for example

[23]. However, this is not the case with the SAS developed for ASSISTANCE.

D4.6 Mission Planner

34 / 53

The optimal approaches are based on mathematical programming and therefore

ultimately on generic solvers like CPLEX, like [1] [3] [4] [7]. These approaches make it

possible to formulate very rich planning problems, going beyond the problem treated

for ASSISTANCE (addition of various constraints, such as time windows to be respected).

When it comes to critical issues, such as the allocation of drones in a context where lives

and critical infrastructure are at stake, we consider that OMC must strive to offer strictly

optimal solutions and therefore we do not wish to rest on a meta heuristic approach. In

addition, the approach consisting in proposing a global mathematical modelling of the

problem then in calling upon a generic CPLEX-type solvers induces execution times

which can quickly become prohibitive for many applications. These response times are

often unpredictable, varying from a few milliseconds to an hour depending on the

complexity of the problem.

In the context of ASSISTANCE, on the contrary, we want to obtain a solution whose

reaction times are both short and predictable. Typically, we don't want a first responder

to experience response times that could potentially be several minutes each time he

presses a button. Indeed, the operational employment context of SAS is one of major

crises involving permanent management of priorities and urgency.

In conclusion, we opted for an ad-hoc solution (i.e. not based on the use of a generic

solver). In addition, we took care to adopt a modelling of the problem allowing to

propose a layered architecture, which makes it possible to better manage the

combinatorial complexity (see 4.2.1.4). Finally, we have taken particular care in the

implementation of our planning solution, in order to guarantee short response times

and to be able, if necessary, to rely on GPU type computers.

4.2.1.2 Presentation of the developed mission solver

The mission solver developed is based on a formulation of the mission planning problem

encountered in the literature. The problem we solve is in fact more generic, since we

have added the notion of mission cluster.

Problem formulation used by THALES

This mission planer relies on the problem formulation proposed by John Bellingham,

Michael Tillerson, Arthur Richards and Jonathan P. How, from the MIT [1]. These authors

demonstrate that the problem of optimal allocation of M tasks between V vehicles can

be formulated as a multi-dimensional, multiple choice, knapsack problem (MMKP).

We solve the following problem:

min 𝐽 = ∑ 𝑐𝑗𝑥𝑗

𝑁𝑀

𝑗=1

Subject to the following constraints:

D4.6 Mission Planner

35 / 53

∑ 𝑉𝑖𝑗𝑥𝑗 = 1

𝑁𝑀

𝑗=1

And:

∑ 𝑥𝑗 = 1

𝑁𝑝+1−1

𝑗=𝑁𝑝

Where the petals of vehicle p are numbered 𝑁𝑝 to 𝑁𝑝+1 – 1, with 𝑁1 = 1 and 𝑁𝑁𝑣+1 =

𝑁𝑀+1 and the indices have the ranges 𝑖 ∈ {1, … , 𝑁𝑤}, 𝑗 ∈ {1, … , 𝑁𝑀}, 𝑝 ∈ {1, . . , 𝑁𝑣}. 𝑐𝑗

is a vector of costs (mission times) for each petal, 𝑥𝑗 is a binary decision variable equal

to one if petal j is selected, and 0 otherwise.

The first constraint enforces that task i is done exactly once. The second constraint

prevents more than one petal being assigned to each vehicle.

The mission planner performs the following steps:

- Step1: build the list of all possible petals. A petal is subset of L indexes in interval

{1, … , 𝑁𝑤},

- Step 2: evaluate the cost of each petal for each drone. This evaluation is based

on trajectories provided by a transport layer (a path planning algorithm). This

evaluation is made for all !L possible orders of the indexes of the evaluated petal

(this evaluation can be made using some heuristic approach). The best order cost

is returned. The best order of execution of a petal may depend on the considered

drone (due to different starting point or turning radius, for instance, see next

paragraph for an illustration).

- Step 3: select 𝑁𝑣 petals (one per drone) such that the union of these satisfy the

two constraints explained above: each task is done exactly once.

Adaptation for ASSISTANCE use case (notion of cluster)

Step 2 involves associating a cost with a subset of L tasks, called a petal.

In the cited publication, evaluating the cost of a petal (it may for example be its duration

or any other criterion to be optimized) requires considering several possible sequencing

orders, or even all of the! L possible web orders. We call sequence a possible sequence

of L tasks of a petal. We must therefore enumerate the! L possible sequences and

calculate for each of them the best trajectory achieving this sequence. For higher

dimension problems (> 9 or 10 waypoints), when it becomes intractable, we can use

heuristic such as 2-opt instead [24].

We call path planning the step of building an optimal trajectory connecting the initial

position of the drone, the waypoints associated with each of the tasks of the sequence,

the desired final position of the drone (for example: its base, or its starting position).

D4.6 Mission Planner

36 / 53

Finally, this trajectory is evaluated according to any operational criterion to obtain a

score (here it is a cost that we want to minimize).

We summarize the steps of phase 2 below. For illustration, suppose a petal made up of

tasks {1, 2, 3, 4, 5}. There are! 5 = 120 possible sequences. For example: {5, 1, 2, 3, 4}

and {5, 1, 4, 3, 2}. For each of these sequences of waypoints:

- Call for a path planning algorithm to determine the best trajectory connecting

the starting position of the drone, waypoints 5, 1, 4, 3, 2 and the desired arrival

position for the drone

- Use it to evaluate the score of this sequence

- If the score of this sequence is better than that of the other sequences, keep this

score

Thus formulated, the problem addressed is not exactly the one we want to address in

ASSISTANCE. In fact, in the aforementioned work, the authors consider that a task (for

example: taking a photo) is associated with a single waypoint: this is the position from

which the photo must be taken, and on which the drone must therefore surrender). By

modelling the problem in this way, we assume that we are able to associate a unique

position with each task. Concretely, the first responder must choose, for each action, a

unique position of the drone at the time of the action.

However, it may happen that a first responder does not have a particular preference as

to the position of the camera to take a shot on the ground (he wishes to observe a

position on the ground, but a priori does not have a preference on the angle of view

itself). The first responder will then prefer to provide a possible zone for the position of

the camera (for example, a circle or a disc) and let the mission hover choose in this zone

a position which decreases the overall duration of the mission and therefore improves

the autonomy operational of the drone.

This point is illustrated below. A first responder wants to take pictures of four houses on

which there is a fire. In figure 18-a, the first responder had to manually choose a

shooting position per object of interest. In figure 18-b, the first responder only chose a

shooting circle, specifying only the position to be observed, the radius of the circle and

the altitude of the latter, and left the mission planner selects a shooting position on this

circle. By leaving an additional degree of freedom for the mission planner, the first

responder has obtained a shorter and therefore more optimal planning solution.

D4.6 Mission Planner

37 / 53

Figure 18 – Waypoints vs clusters planning

We have therefore modified the formulation of the problem as follows: we do not

consider waypoints, but clusters of waypoints. A cluster is a set of N waypoints within

which solver will choose a waypoint.

Thus, considering that a task is associated with a cluster and no longer with a single

waypoint requires the introduction of an additional step, called cluster routing. We call

cluster routing the process of selecting a waypoint within each of the clusters in a

sequence. Choosing the best waypoint depends on the sequence of tasks (and therefore

clusters). The cluster routing step is therefore to be carried out for each sequence.

We illustrate this below with the sequences {5, 1, 2, 3, 4} and {5, 1, 4, 3, 2}, which are

two possible realizations of the petal [1, 2, 3, 4, 5] (i.e. 2 possible orders among the! 5

that should be tested). Concretely, the evaluation of a petal consists not only in testing

all the possible sequencing orders, and for each possible sequencing order (i.e. each

sequence), performing cluster routing to select a waypoint within each cluster.

a

b

D4.6 Mission Planner

38 / 53

Figure 19 – Task ordering with respect to context

We summarize below the steps of phase 2 generalized to clusters instead of waypoints.

Suppose by way of illustration a petal consisting of the spots {1, 2, 3, 4, 5}. There are! 5

= 120 possible sequences. For example: {5, 1, 2, 3, 4} and {5, 1, 4, 3, 2}. For each of these

cluster sequences:

- Calling a cluster router algorithm to select the best waypoint within each cluster.

This cluster routing phase can rely on a path planning algorithm (similar to the

one used below), but could equally well rely on faster technologies, such as

neural networks.

- Call to a path planning algorithm to determine the best trajectory connecting the

starting position of the drone, the waypoint selected in cluster 5, the waypoint

selected in 1, the waypoint selected in 4, the waypoint selected in 3, the

waypoint selected in 2 and the desired arrival position for the drone

- Evaluation of the score of this sequence

- If the score of this sequence is better than that of the other sequences, keep this

score

4.2.1.3 Path planning methodology

Taking UAV altitude into account

The realization of 3D trajectories for UAV would requires having a 3D model of the place

of deployment of the drone system: height and footprint of buildings, vegetation (trees

in particular), electrical infrastructures, landforms, etc. Such a model must also be

precise enough to preserve the integrity of the drones.

18-a: waypoint selection phase for

sequence {5, 1, 2, 3, 4}

1

2 3

4

5

18-b: waypoint selection phase for

sequence {5, 1, 4, 3, 2}

1

2 3

4

5

D4.6 Mission Planner

39 / 53

However, it is unlikely that the users of the ASSISTANCE system will have such a 3D

model in any doubt, whether it is a test campaign as part of the validation of

ASSISTANCE, or even the deployment of a real operational system (at least in the near

future). Moreover, in the event of an earthquake for example, or a landslide etc. such a

3D model may be wrong. This would have typically been the case in the appalling

collapse of the Genoa bridge on August 14, 2018 (figure 20), or during a landslide such

as the one that occurred in Taiwan on April 26, 2010 (figure 21).

Figure 20 – Collapse of Genoa bridge in 2018

Figure 21 – Landslide in Taïwan in 2010

For this reason, we have opted for 2D and a half trajectory, composed of three

sequences: an altitude change phase (initial altitude → cruising altitude), a 2D navigation

phase at this cruising altitude (which will suffice) to take sufficiently large: for example

80m) and a new phase of change of altitude on arrival (cruising altitude → final altitude).

We only optimized the following case: initial and final altitudes both higher than the

cruise altitude, in which case the drone cruises at the lower altitude of the two.

Note: the PIAP UGV has obstacle detection and avoidance capabilities that will allow it

to adapt its trajectory to unplanned accidental obstacles, such as debris, vehicles, etc.

D4.6 Mission Planner

40 / 53

The trajectory will then be calculated based on information known to the first responders

and the UGV will rely on its AI to adapt the trajectory obtained.

Obtaining 2D trajectories (for both UAV and UGV)

2D trajectories were obtained using James Sethian's fast marching algorithm [25]. The

generation method is as follows:

- Sample the area with a regular pitch grid

- Associate a cost with each node of the grid. A pixel not belonging to any cost

penalized area is assigned an arbitrarily low non-zero cost: 0.0012. A pixel

belonging to an area penalized in cost is attributed the cost associated with this

area (this is the cost entered by the user, as explained in paragraph 4.1.1).

- Solve the eikonal equation (for example: propagation of a mobile) by

propagating the following initial conditions: the distance associated with the

starting point is 0, the distance associated with any other point is infinite.

- To get the trajectory from the starting point to any position on the grid, go up

the distance gradient (using any digital derivation process).

- For each grid point considered, the trajectory thus obtained is the geodesic

with the lowest cumulative user-defined cost, i.e. the best trajectory within the

meaning of the used-defined cost function.

The trajectories obtained in this way are continuous trajectories (they pass between the

nodes), unlike the trajectories obtained with a graph-based approach (the trajectories

would pass through the nodes via predefined transitions). The Figure 22 illustrates this

phenomenon, on a trivial case (all the nodes have the same cost of 1). In blue, a

trajectory obtained by applying a Dijkstra or A * type algorithm. In red, a trajectory

obtained by applying a fast marching algorithm.

2 The cost associated with a pixel cannot be strictly zero, otherwise the gradient ascent phase would fail
at this point.

D4.6 Mission Planner

41 / 53

Figure 22 – Smooth trajectories vs Dijkstra like trajectories

These trajectories must then be filtered so as not to provide the UxV with waypoints

that are too close together. The strategy devised within the framework of ASSISTANCE

is based on segmenting the trajectories by portions of quasi straight lines using the

variations in heading observed. Figure 23 illustrates the performance of this point

filtering. In blue, the initial trajectory (from the trajectory solver). The red circles

represent the positions that will be retained within the flight plan provided to the drone.

Figure 23 – Trajectory pruning

An essential parameter of the path planning layer is the grid step. Computing times

increase when the grid pitch decreases.

D4.6 Mission Planner

42 / 53

An auto-adjustment mechanism is provided in order to guarantee a number of nodes

close to 50,000, which seems to offer a satisfactory compromise between execution

time and trajectory precision.

4.2.1.4 OMC architecture

This solution was instantiated as a C++/OpenCL library relying on a layered architecture:

- Task allocation layer: responsible for the repartition of the tasks between the

drones.

- Task ordering layer (for a given task allocation on a given drone): responsible for

the selection of the best order of execution of the tasks.

- Cluster routing layer (for a given sequence of tasks on a given drone): responsible

for the selection of a waypoint in each cluster.

- Path planning layer (for a given sequence of waypoints on a given drone):

responsible for determination of the best trajectory connecting the drone

starting position, each of the selected waypoint and the desired final position for

the drone.

4.2.2. Data Model

The OMC and MPM modules communicate through a request and response file

mechanism based on the JSON standard. MPM communicates the context information

(cost penalized areas formulated a polygons, performance, available function and

current position of the drones, etc.) as well as the tasks to be carried out (camera shots

and temperature readings). OMC distributes these tasks between the drones and

provides, for each of them, a flight plan (waypoints and actions such as start shooting,

stop shooting).

4.2.2.1 OMC request file content

JSON request file for OMC contains:

- Contour of the mission zone (within which the trajectories of the drones must be

maintained)

- Current positions of drones

- Desired final position for drones

- Positions of temperature readings to be taken

- Shooting positions to be performed

- Non-zero cost zones (if any), associated with a variable amplitude weighting,

allowing certain zones to be penalized more than others (an arbitrarily high

weighting which can mean a prohibited zone)

- For each drone:

o List of functions performed

o Autonomy

D4.6 Mission Planner

43 / 53

4.2.2.2 OMC response file content

The JSON response file contains a flight plan for each selected drone. A flight is made up

of the following information:

- A list of dated waypoints

- A list of dated actions (start a measurement, stop the measurement)

4.2.3. Module Tests

A scenario editor on KML support was produced in order to be able to generate a test

set that we consider covering.

4.2.3.1 KML scenario editor

Google Earth software allows you to edit lines and positions of KML files and then save

them as a file in KML format via a very user friendly GUI. The KML format is an overlay

of the XML format. A KML file loading module has been developed to load the

placemarks of a KML file.

By using the "description" and "name" fields of the edited placemarks (always thanks to

the editing features offered by Google Earth), we can quickly edit scenarios.

Figure 24 shows the contents of a KML file. Each Placemark capsule corresponds to an

object edited on the map. A Placemark capsule contains a <name> field and a

<description> field. A clever use of these fields, associated with an algebra of key words

(such as "camera", "temperature", "drone", "zone" or even "theater") then makes it

possible to find all the elements of the scenario. This scenario is then transformed into

a JSON request recognized by the solver.

Figure 24 – Example of KML scenario file

4.2.3.2 Tests plan

We report here the results on 3 IZMIR scenarios each comprising 4 drones, 4

temperature readings and 4 shots.

D4.6 Mission Planner

44 / 53

We first present (figure 25) the scenario edited using Google Earth GUI. The blue outline

marks the mission area. The red contours delimit areas at non-zero cost. The 4 green

icons indicate the starting and finishing positions of the drones. The 4 yellow icons

indicate the positions of the temperature readings to be taken. The 4 purple icons

indicate the shooting positions.

Figure 25 – Test scenario edited on Google Earth

In scenario 1, the 4 drones each have a temperature sensor and a camera. In scenario 2,

the swarm is heterogeneous (2 drones with only one temperature sensor, one drone

with one temperature sensor and one camera, one drone with only one camera).

Scenario 3 is identical to scenario 2 with non-zero weighted areas.

D4.6 Mission Planner

45 / 53

Figure 26 – Comparison of scenarii 1, 2 and 3

Scenario 1 drone_1 drone_2 drone_3 drone_4

Temperature

Camera

Scenario 2 drone_1 drone_2 drone_3 drone_4

Temperature

Camera

Scenario 3 drone_1 drone_2 drone_3 drone_4

Temperature

Camera

Scenario 1 et 2 Scenario 3

D4.6 Mission Planner

46 / 53

Scenario 1 results

Figure 27 – Results on scenario 1

As the 4 drones have the same functions, the optimal distribution is quite intuitive (each

drone performs two tasks). In the absence of a non-zero-cost zone, drones fly in straight

lines.

The assignments are as follows:

- Drone 1 (bottom right): tempMeas_2, camShoot_0

- Drone 2 (top right): camShoot1, tempMeas_1

- Drone 3 (top left): tempMeas_0, tempMeas_3

- Drone 4 (bottom left): camShoot_2, camShoot_3

D4.6 Mission Planner

47 / 53

Scenario 2 results

Figure 28 – Results on scenario 2

Since drones 2 (top right) only have a temperature sensor, it can no longer perform

camShoot_1. Likewise, drone 1 (bottom right) can no longer perform camShoot_0. The

drone 3 (top left), which still has 2 types of sensor, takes the two shots thus neglected.

The assignments are as follows:

- Drone 1 (bottom right): tempMeas_2

- Drone 2 (top right): tempMeas_0

- Drone 3 (top left): tempMeas_3, camShoot_1 and camShoot_0

- Drone 4 (bottom left): camShoot_2, camShoot_3

D4.6 Mission Planner

48 / 53

Scenario 3 results

Figure 29 – Results on scenario 3

The trajectories are now much more complex due to the presence of areas penalized in

cost. The optimal distribution of tasks is no longer intuitive at all.

The assignments are as follows:

- Drone 1 (bottom right): tempMeas_2

- Drone 2 (top right): tempMeas_1, tempMeas_0, tempMeas_3,

- Drone 3 (top left): camShoot_1, camShoot_0, camShoot_3

- Drone 4 (bottom left): camShoot_2, camShoot_3

D4.6 Mission Planner

49 / 53

5. Use cases

This section describes functional use cases that will help each partner to understand

how their module is integrated into a functional scenario and validate interactions

between modules as data exchanged.

5.1. Mission Preparation

Based on the sequence diagram described in the chapter 3.3.1, a detailed test case has

been built. This test case is presented in this chapter.

It has been performed at different level to check that each task works as expected.

The table below shows the main steps of the test case (the most human readable things)

that explain how the detailed plan is computed and send to all GCS. MPM will organize

the whole workflow.

Step Description

Description of the resource available in

the area of the mission. Resources are

provided by SAS

Define the context of the mission:

- Mission area

Define the context of the mission:

- Targets

D4.6 Mission Planner

50 / 53

Define the context of the mission:

- Forbidden zones

 After computation by OMC, list of

actions (flight and sensor) are available

MPM displays the whole mission for all

resources

 MPM sends Mission to SAS

Table 6 Mission computation use case

This module T4.6 will take place in :

- SC1- Use case 1: Deployment of Sensors and Mobile Platforms,

- SC2 – Use case 1 : Deployment of sensors and mobile platforms/Planning and

preparation,

- SC2- Use case 6: Transformer building investigation,

- SC3- Use case 1: Deployment of sensors and mobile platforms.

All these use cases have been described in document D2.3

D4.6 Mission Planner

51 / 53

6. Conclusion

The main objective of this deliverable is to define the system architecture and the data

model of the task T4.6.

Chapter 3 recalls the purposes and challenges of task 4.6, namely the development of

the Mission Manager Module (MMM), as well as the role played by the latter in the

ASSISTANCE architect. We detail the interfaces between MMM and the SAS, as well as

the interfaces between the two modules constituting the MMM (MPM and OMC,

namely Mission Planner Management and Optimized Mission Computation). Finally, we

present the complete sequence diagram allowing the MMM operator to build a mission.

Chapter 4 provides some implementation details of the two modules that make up the

MMM, namely MPM and OMC. For each of them, the data models are presented, as

well as the unit test procedure used to validate them separately.

Finally, the chapter 5 describes the functional use cases where task T4.6 is involved. It

helps the consortium to understand how this task works in the overall project. And it

allows us to check that requirements have been considered by our components.

In this document, all components of the task T4.6 have been successfully described. All

tests proving that components work as expected have also been defined and have been

done.

D4.6 Mission Planner

52 / 53

7. Bibliography

[1] Multi-task allocation and path planning for cooperating UAVs, J. Bellingham, M.

Tillerson, A. Richards, J.P. How, 2003

[2] Optimal vs heuristic assignment of cooperative autonomous unmanned air vehicles,

S. Rasmussen, P. Chandler, J. W. Mitchell, C. Sschmuacher, A. Sparks, 2003

[3] Flight planning for unmanned aerial vehicles, A. Fügenschuh, 2015

[4] Mission planning for unmanned aerial vehicles, A. Fügenschuh, 2019

[5] Complexity in UAV cooperative control, P. R. Chandler, M. Pachter, D. Swaroop, J. M.

Fowler, J. K. Howlett, S. Rasmussen, C. Schumacher, K. Nygard, 2004

[6] Cooperative path planning for multiple UAVs in dynamic and uncertain

environments, J. S. Bellingham, M. Tillerson, M. Alighanbari, J. P. How, 2002

[7] Military aircraft mission planning: a generalized vehicle routing with synchronization

and precedence, N-H. Quttineh, T. Larsson, K. Lundberg, K. Holmberg, 2013

[8] Military aircraft mission planning: efficient model based metaheuristics approaches,

N-H Quttineh, T. Larsson, 2014

[9] A memetic algorithm for path planning of curvature-constrained UAVs performing

surveillance of multiple ground targets, Z. Wing, C. Jie, X. Bin, P. Zhihong, 2013

[10] Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles

using a modified genetic algorithm with multi-type genes, D. Qibo, Y. Jianqiao, W.

Ningfei, 2013

[11] Cooperative task assignment and path planning of multiple UAVs using genetic

algorithm, Y. Eun, H. Bang, 2007

[12] Multi UAV reconnaissance task assignment for heterogeneous targets based on

modified symbiotic organisms search algorithm, H-X. Chen, Y. Nan; Y. Yang, 2019

[13] Genetic algorithm based decentralized task assignments for multiple unmanned

aerial vehicles in dynamic environments, H. Choi, Y. Kim, H. Kim, 2011

[14] Multiple task assignments for cooperating uninhabited aerial vehicles using genetic

algorithms, T. Shima, S.J. Rasmussen, A.G. Sparks, K.M. Passimo, 2005

[15] Assigning cooperating UAVs to simultaneous tasks on consecutive targets using

genetic algorithms, T. Shima, C. Schumacher, 2009

[16] Cooperative task allocation for unmanned combat aerial vehicles using improved

ant colony algorithm, J. Tao, Y. Tian, X. Meng, 2008

D4.6 Mission Planner

53 / 53

[17] Genetic algorithm for task allocation in UAV cooperative control, G. Chen, J.B.Cruz

Jr, 2003

[18] The Hungarian method for the assignment method, H.W. Khun, 1955

[19] GPU-accelerated hungarian algorithms for the linear assignment problem, K. Date,

R. Nagi, 2016

[20] A new approach for solving the single objective unbalanced assignment problem,

V. Yadaiah, V.V. Haragopal, 2016

[21] The average sum method for the unbalanced assignment problems, S.K. Dubey, A.

Kumar, V. Upadhyay, 2018

[22]A new approach for getting optimality of assignment problems, B.M. Patel, M.J.

Doshi, 2019

[23] An Iterative Strategy for Task Assignment and Path Planning of Distributed Multiple

Unmanned Aerial Vehicles, W. Yao, N. Qi, N. Wan, Y. Liu, 2019

[24] A method for solving traveling salesman problems, G. A. Croes, 1958

[25] Fast marching methods for robotic navigation with constraints, R. Kimmel, J.A.

Sethian, 1996

